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SPAITR is a UNH student startup with the * Randomly sampled training and test sets with 70:30 split

goal of empowering players to improve Task: Train machine learning models to predict the number of * Features are the six variables over all 70 samples in the
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atiliele s analytics more accessibie. Thls session, using timeseries based accelerometer and gyroscope data. PP P

allows them to make data driven training collection period by (1) predicting shots in sliding
decisions. windows, then (2) collapsing subsequent shot windows

* The scikit learn Python library allows for rapidly
developed and adaptable machine learning models

Machine learning models are more

accurate and are preferred to the Shot Data Visualization » Baseline models include always positive, always
heuristic shot detection method currently negative, and random classification
in place. This is due to their  Machine learning methods:
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the capabilities of the player and sensors. X © /eC|S|on ree N
\ ) ‘)"— Q Qf;iﬁ(éf) ={(2,y)|z; <=tm}
f ! \ Qro"™(6) = Qm \ QXM(0)  ¢* = argmin, G(Qwm, 0)
left right
Data | G (@ 0) = T H(Q(0)) + 2 H(Q5(0))
| k m m /
. \ Figure 1: Phases of a lacrosse shot. S y Machi
. . o Support Vector Machine
* SPAITR’s Neuro™ collects time-series p PP N
accelerometer and gyroscope data in N . N %y N i L r . o%
. . | . i g n — + ;
three dimensions , wh 2 ;C B
O WS, aX, dy, aZ, gX, 8Y, 84 e : 1 0 ...'\":m subject to yz-(’qub(:L’z-) +b) >1- ¢, |
 Dataset includes a variety of lacrosse T | e— % . % . o & 6 208 = iy x5 J ‘ ,
activities including: = , £ ; S| e - ’
- . & o.' M 5
o lIsolated shots s o e 5 0 s = 9 |
: @ B e o ¢ 3 5 i
O Sever.al shots in sequence g .. ,,:':. § N . § N Results
o Cradling < : < : <
o Ground balls -10- - ~10- : Ly s . . . \
o Ball drops . High accuracy achieved by machine learning on clean data.
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Figure 2: Graphical representation of shot data including the six motion variables over time, with the o Train models to detect other events
e e A e A L A il orange window highlighting the shot itself. o Generate and train on data from a diverse pool
160000 13084 -10980 5792  -356 -406  -172 of athletes in terms of age, gender, and ability

Contact Information: malcashman@gmail.com SPAITR.com



mailto:malcashman@gmail.com
http://www.spaitr.com/

