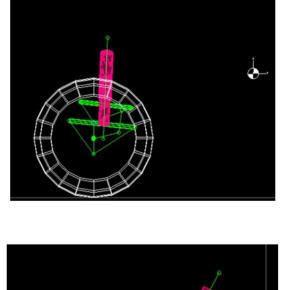
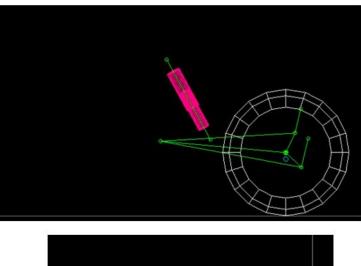
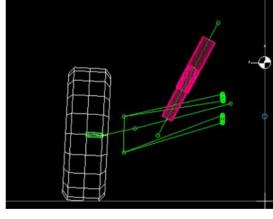
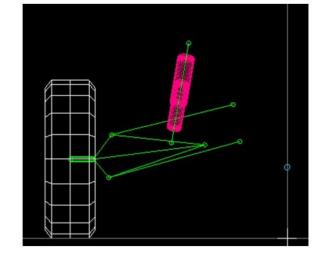
Background & Objectives

Introduction and Background Information


- As a prerequisite of senior projects, the UNH BAJA team was tasked with designing and fabricating an off road vehicle that will compete in the Society of Automotive Engineers (SAE) Baja Competition.
- The BAJA SAE is a contest that is held annually. It is comprised of Universities in the United States and overseas.
- Vehicle will be tested on acceleration/braking, hill climb/traction, maneuverability & endurance.


Methods


- Based on the previous designs, adjustments were made in the framework suspension to make it more ergonomic and to improve safety of the driver.
- There were new set of rules for this year's competition. Members were assigned to review the new handbook for rules.
- The team members were divided up and assigned to specialize in the frame suspensions, engine and drive train and the testing of the vehicle.


Design Goals

- Maintain useful geometry over rough terrain and jumps
- Utilize full shock travel range
- Minimize bump steer
- Decrease understeer and dead steering.

Lotus Shark Geometry Analysis

- 13" of travel front and rear
- Front camber decreases 0.62° per inch of travel
- Rear camber decreases 0.43° per inch of travel

Suspension

- desirable camber and toe

- suspension travel at high angles
- New ball joint linkages and Delrin bushings allow smooth operation
- 1" x 0.95" wall 4140 tubing for all components

- stability under acceleration
- travel range
- time constraints

Team Members: Tyler Burke, Alexander Montehermoso, Noah Rapazzo, Kenneth Openshaw,

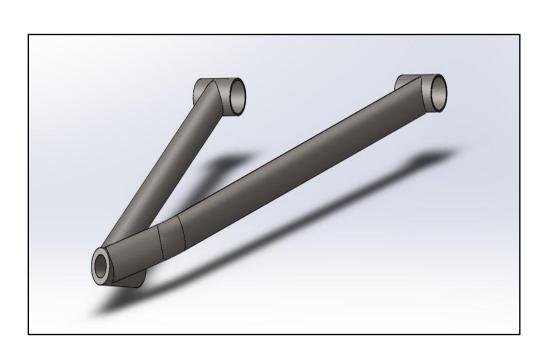
Controls

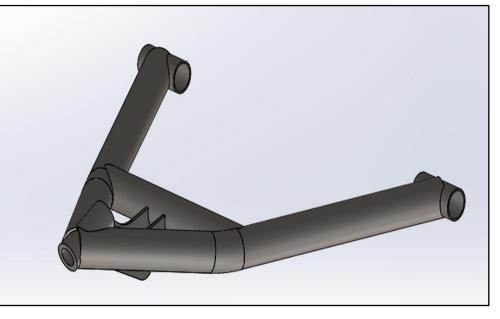
Brakes

- Drop Mounted Pedal Design
- Pedals withstand 2000N force
- Lights attached on front and back
- Runs through front console

Steering

- Packaged comfortably for driver
- Wheel connects to front wheels via U-joint
- Stiletto Fast Rack and Pinion
- Steering ratio of 3:2:1


Front Suspension – Unequal Length A-Arms "Progressive" geometry maintains Shock mounted on lower A-Arm • New Heim joints will allow for smooth


Rear Suspension – 3-Link Trailing Arms Trailing arm design adds strength and • "Linear" geometry allows for use of full

Adapted from previous design to meet

Fox Float 3 EVOL Air Shocks

- 18" x 5.6" stroke
- Infinitely adjustable spring rate
- EVOL chamber adjust curve of spring rate

Esther Soloman, Thomas Colson

Engine

- 10 HP Inek Briggs and Stratton Cannot be Modified
- 14.5 ft-lb of torque
- Multi-Positional Engine Mount

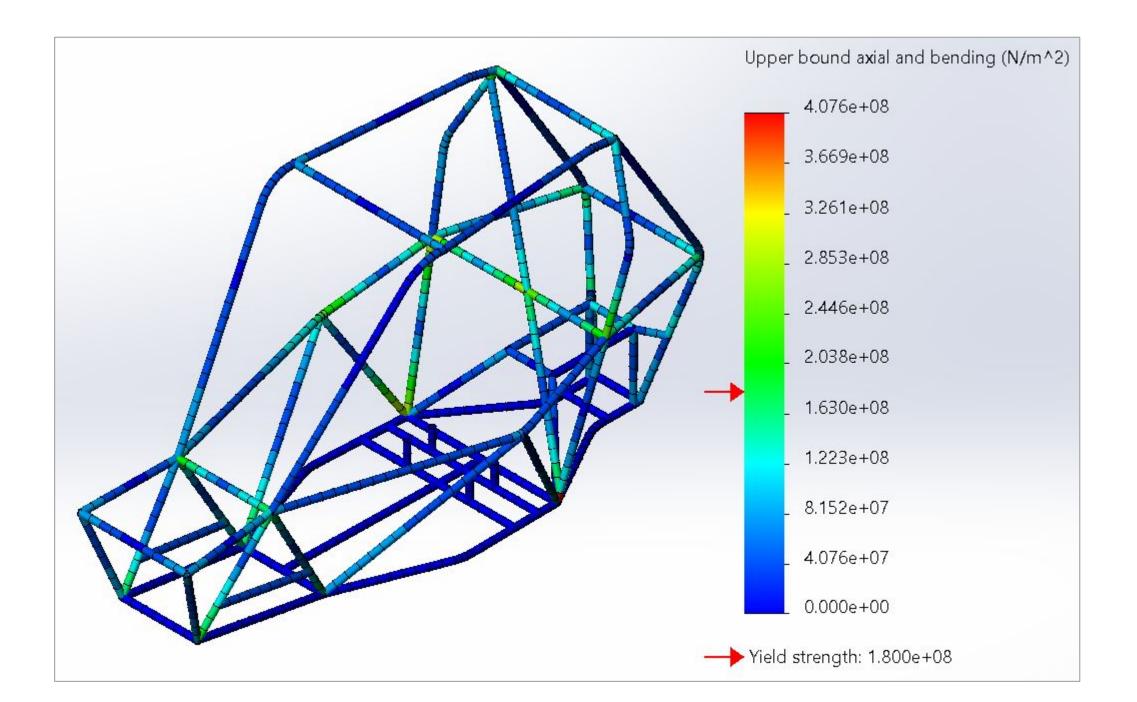
CVT

- Infinite gearing ratios
- Fully rebuilt this year
- Tuning
- Compressional Spring (45)
- Torsional Spring (19 lbf)
- Flyweight (+/- 120g)
- Helix Cam Angle (27°)
- Belt Type

Arrangement

- Engine output shaft drives CVT
- CVT attached to chain reduction
- Chain reduction mounted to drive shaft
- Drive shaft connects to rear 2016 Polaris Ranger differential
- combination front and rear differential drives half shafts turning the wheels

Research and Design:

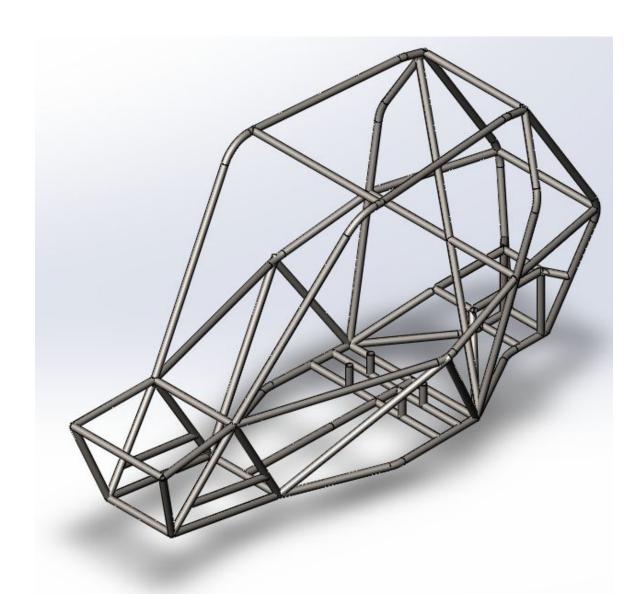

- Updated 2021 design with ergonomics, strength, and center of gravity
- Modeled and analyzed in SolidWorks
- Triangulated members distribute stress efficiently
- Calculated stiffness and strength of material
- Designed for manufacturability at UNH

Ergonomics:

- Comfortably fits 5th percentile female to a 95th percentile male
- Widened frame and increased leg room
- Reinforced front and side impact members
- Lower center of gravity than previous years model
- Increased driver space

Materials Selected:

- Material: Carbon Steel
- Profile: 1" outer diameter, ¹/₈" thickness
- Bending stiffness of frame members 25.4%
- Yields weight of 120 lbs.
- Bending Stiffness of 1,733 Nm² & Strength of 243 Nm


Drive Train

			Brigg	s & Strattor	M19H 10.0	HP Net To	rque		
5			_	_					- 21
									_
-			_	_			_	_	10
		_	_	_	_	_		_	,
						-	-	-	_
		-	_		-				
	18				-	_	-		_
	9.000 2000	2,988	3600	2600	380 874	5000	10107	1440	3400

CVT System Ratios

Pulley	Ratio			
	Starting	3.90:1		
Primary	Ending	0.90:1 (Nominal)		
	Starting	3.50:1		
Secondary	Ending	0.90:1 (Nominal)		

