

Tier 1

Tier 1

Introduction

- Three-dimensional (3D) integration brings in new security challenges
- New types of hardware Trojans can be launched by exploiting 3D stacking structure
- We characterize the 3D hardware Trojan with four cases \bullet for better investigating 3D IC security
- A thermal-triggered 3D Trojan is demonstrated to verify the feasibility and efficiency in 3D environment

Proposed Trojan Characterization

- **Case1: Cross-Tier Trojan Trigger**
- No symptom without valid cross-tier trigger signal Case2: Cross-Tier Trojan Payload
- Trojan effect is not observable in tier-level testing
- Case3: Multi-Tier Collaborative Trojan Trigger Much lower triggering probability than 2D counterpart
- **Case4: Information Leaking in Passive Layer**
- No alteration to normal operation and communication
- Weak side-channel

A Comprehensive Study on the Hardware Trojans in 3D ICs Zhiming Zhang and Qiaoyan Yu University of New Hampshire, Durham, NH

Case1: Thermal-triggered Trojan Example Trigger: heat generator in top tier – Payload: temperature sensitive resistor in middle tier Procedure: generated heat is passed to middle tier to be sensed by payload to cause malfunction Case2: Trojan Induced Crypto Key Leak Crypto unit AES is located in middle tier Crypto key is obfuscated and stored to rarely used memory in top tier Case3: 3D Network-on-Chip (NoC) Trojan – Rogue IP core in tier 1 sends malicious NoC instruction packet to rogue switch in tier 2 – Rogue switch in tier 2 passes the packet to victim IP core in bottom tier to cause malfunction or livelock

 \square

Heat generator Middle tier Temperature sensitive Middle tier **Case4: Information leak due** to a 3D NoC Trojan Both trigger and payload are located in middle tier Victims are in top and **bottom tiers** Packets transmitting through middle tier is monitored Target packet is stored for future use and analysis Middle tier Bottom tier

Demo setup Two input switches for trigger circuit Thermal sensor Password reset Heat generator **Experimental results** – Demo outputs: Authentication passed with incorrect password 2D scenario nulation scenarios Conclusions • Characterized four representable high-level 3D hardware Trojan cases and analyzed each one with an example **Demonstrated thermal-triggered 3D Trojan in FPGA and** microcontroller platform **Compared Trojan efficiency of 2D and 3D scenarios Technology Transfer** This work is published and presented in ISVLSI'19.

Acknowledgement

This work was supported in part by NSF/Semiconductor **Research Corporation (SRC) STARSS grant (No. CNS-**1717130).

Semiconductor Research Corporation

Hardware Demo on Thermal Trojan

– Efficiency comparison: **Triggered faster than** Time to trigger Trojan (min) 6:52

