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We start with the linearized, depth-integrated, shallow water, inviscid,

horizontal momentum equations. The total flow is a combination of the

mean flow plus a small perturbation, 𝑢′ = (u, v + V) where u, v << V, and

is represented by the stream function, 𝜓. Under the rigid-lid assumption

with non-divergent flow, and neglecting the Coriolis force, the horizontal

momentum equations can be represented as the conservation of potential

vorticity equation (Eq. #1). The solution for the stream function is below

(Eq. #2), which reduces to the Rayleigh Equation (Eq. #3) in each region

(Figure 2).
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Hypothesis

Tidal currents in narrow inlets and channels can have horizontal

velocity gradients that produce instabilities in the flow (so-called

shear waves) that can lead to the spinoff of large eddies. The

resulting vortices, or eddies, may impact navigation, transport of

organic or inorganic matter (i.e. larvae, oil spills, etc.), and cause

mixing of momentum in coastal estuaries.

Figure 2. (Left) Following

Bowen and Holman (1989), the

along-channel tidal current

structure (black line) over a flat

bottom, h, (gray bar) and

associated background

vorticity,
𝑉𝑥

ℎ
, (orange line) are

sketched per region across a

channel, which is bounded on

either end, x = 0 and x = xmax,

(gray bars). The solutions for

each region are shown below.

The along-channel tidal current speed may vary both temporally and

spatially across the channel, or inlet, as a function of the tides causing

a horizontal velocity gradient (Figure 1). The cross-channel current

shear provides a background vorticity field that supports a linear

instability mechanism. The magnitude and length scales of the current

are similar to those observed in the nearshore environment. However,

this problem differs from the nearshore in that there are no breaking

waves driving the flow and instead the tides are the forcing

mechanism for the currents. The currents are also bounded by land on

both sides of the flow through the inlet versus only on one side by the

coast.

The horizontal shear of the mean current can cause the flow to

become unstable leading to a barotropic instability (i.e. shear or

vorticity wave) that can lead to the development of eddies [1, 2, 3,

4]. In this work, we follow Bowen and Holman (1989) to

analytically solve for linear shear instabilities in ebb and flood tidal

currents in narrow estuarine channels. The wave-like solutions have

phase speed c = σ/k with σ and k the radian frequency and

wavenumber, respectively. When σ has an imaginary solution, an

instability develops with exponentially growing amplitude [1, 3].

The criteria for unstable solutions are an extremum of the

background potential vorticity (Figure 2) and the pressure (or η)

must be continuous across the regions [1, 4]. An array of ADCP’s

will be deployed in the estuary to obtain estimates of σ-k spectra

that will be compared with the linear analytical solutions for the

fastest growing modes (Figure 3). Numerical models may be run to

determine if the instabilities develop into non-linear eddies.

Implications

The maximum current (V0) was set to 1 m/s and the current width (x0) was

set to 100 m. The location of the maximum current varied as a function of

current width, 𝛿x0, which changed the strength of shear on either side of

the maximum. The width of regions 0 and 3 (i.e. the shelves) varied as a

function of the current width (x0). After matching conditions at the region

boundaries, the dispersion relation was found to be cubic over both a

constant depth (shown above) and for varying bathymetry, h(x), which

includes shallow shelves, αh, in regions 0 and 3 surrounding a deeper

channel, h, that runs through regions 1 and 2.
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Figure 1. (Above) Tidal current observations (m/s) collected by Lippmann et al. 

in the Piscataqua River (red, top) and Hampton Inlet (yellow, bottom) along a 

transect across each inlet (x-axis) versus depth (y-axis). 

Reg. 0 : 𝜓0 = A0 sinh(kx)

Reg. 1: 𝜓1 = A1 sinh(kx) + B1 cosh(kx)

Reg. 2: 𝜓2 = A2 sinh(kx) + B2 cosh(kx)

Reg. 3: 𝜓3 = A3 (sinh(kx) – tanh(kxmax)cosh(kx)) 
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Figure 3. (Left) 
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Hampton Inlet. 

Observations will be 

compared to the 

analytical solutions. 

It is expected that shear instabilities will cause tidal currents in narrow

inlets and estuaries to meander along the channels varying in both time

and space. This variability and any eddies or vortices produced by

nonlinear instabilities may impact navigation and/or the passive

transport of both organic and inorganic substances (e.g. nutrients, larvae,

oil). Under the rigid lid assumption, in order for an instability to occur

energy must be transferred from the background flow (V) to the

perturbed flow (u',v') through the Reynolds stress ρ(u′v′) [2]. Non-zero

Reynolds stresses can be observed with ADCPs and determine the

strength of the mixing of momentum in the estuary by instability

mechanisms. Consequences include impacts on renewable energy

initiatives as mean kinetic energy would be lost to turbulent kinetic

energy through development of unstable eddies.
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The analytical solutions to the linear instability problem over a constant depth 

are shown above. An increase in shear (𝛿) leads to faster growth rates of the 

unstable shear wave modes and a larger range of unstable wavelengths (Fig. 

4, top left). The stream function shows how the shear wave progresses along 

the tidal inlet (Fig. 4, top middle). The derivative of the stream function 

results in the total velocity, which meanders along the inlet as the current 

becomes unstable (Fig. 4, top right). The fastest growing wave mode and 

wave lengths of the linear instabilities are both sensitive to the strength of 

shear of the current and the shelf width (Fig. 4, bottom).  An increase in shear 

causes faster growth rates and smaller wavelengths. The growth rate and 

wavelengths become insensitive to changes in shelf width at a certain point.

Figure 4. Positive imaginary roots to the linear

instability problem (top left). The stream function and

resulting velocity given 𝛿 = 0.5 and shelf width =

0.2x0. Velocity vectors are normalized to 0.75 m/s. (top

middle and right). The growth rate as a function of

strength of shear and shelf width (bottom left).


