Three models are trained to classify the polytopes by the Euler number y and the

Hodge numbers h''! and h??! of the corresponding Calabi-Yau 3-fold. All the models
e S l l S preform roughly the same at an accuracy of 35% - 40%.

Test Data Distribution

String Theory

e String theory is a physical framework that unifies quantum mechanics
with general relativity, i.e. a theory of quantum gravity.
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e There are different formulations of the theory, but each requires at O S e s o T Bt e e s e (LR D et et
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least a (9 + 1)-dimensional spacetime stucture to be mathematically reflexive polytope A* representing a particular type of compact the two seperate, alternat-  son
consistent. In order for string theory to agree with the experimentally (n + 1)-dimensional manifold known as a toric variety: ing distributions. 0 200
verified (341)-dimensional spacetime, 6 of the 9 spactial dimensions e R TR
0 . o . Predicted h'?
must be “compactified.” These compactified dimensions take the form N t
L1 Predicted ALt

of a Calabi-Yau 3-fold, a three complex dimensional manifold. The error in actual hb! vs 5 A confusion matrix of the prediction of

predicted hbl s plotted along 10 hY1 is plotted which shows actual vs pre-

20 dicted h'! with color indicating model
frequency. A model with 100% accu-
racy would have a straight line with slope

with the error of A! up to

e It has been shown that there is a lower bound of 10°°° different com- first order vs predicted hl:l.
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e Can be used to classify data according to known or unknown patterns = (21,22, 23) ~ (Az1, Az2, Az3)

e Dataset is split into two groups: Our model: Ontology | Layers | Neuron Density | Output Size | Accuracy | Actual — Predicted
: — A training set to calculate gradients and adjust internal parameters ac- : : : X 7 S o 86.457 03363112 6.63236
' vo : e Three models are each trained to learn a different topological property hi1 3 362 480 40.62% 0.58364 + 6.63748
cordingly to minimize a loss function. of the Calabi-Yau 3-fold corresponding to the input polytope: the Euler h21 3 362 480 34.54% 0.83766 + 7.66044
— A testing set to generate predictions and access accuracy. number y, and the Hodge numbers A''! and h?!. Ontology | Teading Order ~ Predicted
e There are many different machine learning paradigms. For a classification — Topologically speaking, h''! and h?! are invariants which count the Relevance of Input Neurons >1< . —0.343800 & 12.79859
problem, we use a fully-connected network with rectified non-linearity. different types of holes in the Calabi-Yau 3-fold, while y counts the 136 1 22:1 gg;???g i 51)072223326 A
_ . . _ difference between these holes. That is, x = 2(ht! — h?1). ' '
— Consists of N vectors, called hidden layers, which are chained together
via linear transformations and non-linear functions: e Models have 5 - 10 hidden layers with 362 - 1000 neurons per layer. We measure the relevancy of each input by propogating

the output back through the network accoring to the rule

pn(W"a" ™1 4 b"™), with p, some non-linear function. e 136 input neurons and 480 - 961 output neurons, depending on ontology.

m ,,m—1 1 m
L

. . . & m—1 _
— An input layer a® feeds into the first hidden layer (a') and the last hidden 4-dimensional Reflexive Polytopes § % Ry = Z Zk Wmgm—1 4 pm K
layer (a”) feeds into an output layer a1, where predictions are read . . 2 5 k U 3
The phenomenologically relevant case are the 4D polytopes which represent the 7 o)
Sifde Calabi-Yau 3-folds of string th he curled up 6 real dimensi A
. . o alabi-Yau 3-folds of string theory (or, the curled up 6 real space dimensions). where RY* denotes the value of the k' neuron in the m*™®
— It is often useful for the output layer to represent a probability distribu- ) ) layer, and n; denotes the number of neurons (neuron
tion, in which case the output layer is normalized. e There are 473,800,776 reflexive polytopes in 4D density) in the j*" layer.
e Many share the same topological features The most relevant input neurons for these 10 polytopes are
— Pl‘ed(zinput) — O’(,O(Wnan_l + bn)) with a0 = Zinput only the first few. This is where the feature data about the
) . o . .
e ~150 GB of raw vertex data (parsed and compressed to ~15 GB) 1 0 polytopes is kept, in particular, the most relevant neuron is

the number of points in the dual polytope while the vertex
data is barely being used. In the future, we will probably
begin focusing on the use of feature data like the number
of points exclusively.

Polytope

where o(z;) = ﬁ, p(z;) = max(0,2;), and a""! = p(W""ta""2 4 p"~1) e Vertex data is used as input to the model, along with other polytope
=1

features (e.g. number of vertices, number of lattice points, etc).
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