University of New Hampshire

Introduction

As the data science industry evolves, the demand for new data collection techniques becomes increasingly sought after. Whether it be different techniques or different hardware, there has been a perpetual need for a precise but cheap data collection system.

Our project addresses these issues with an inexpensive, customizable, wireless transmission system can transmit data from anywhere using a gateway and Arduino sensors.

Implementation

- Implemented multi-node system to read and send data from Arduino sensors Data can be sent to gateway which then
- gets stored on The Things Network
- Low power consumption means that

Local Area Network

Short Range

Figure 1: Fully implemented system

Advantages

- Cheap
- Customizable
- Modular
- Power Efficient
- Easily Implemented
- Easily Expandable

Low Power Wide Area

Next Steps

- Enhance usability for inexperienced users
- Speed up data collection
- Expand networking range
- Offer use of system to farmers or researchers

Acknowledgments

Thank you to UNH, the National Science Foundation (1935578), and the Department of Computer Engineering for their commitment to our research. Further thanks to **MD Mahmud Shaad** for guiding us through our research.

LoRa-based Mesh Network for Remote Sensing

Ryan Conte, Robert Lee

Advisors: MD Shaad Mahmud, Wayne Smith

- Our project's aim is to create a cheap but effective system to wirelessly transmit data from an IoT-enabled sensor to a gateway
- The system is composed of an Arduino MKR WAN 1300 and BME280 sensor, an UG87 gateway, and TTN database
- Core components of the system (Arduino, gateway, sensors) need minimal modification from project to project
- Sensors can read temperature, pressure and humidity

Figure 4: Arduino ready to be put together Phase 1: Arduino & Sensor Sensor collects data until the Arduino is ready to send packets to parent node or gateway.

Applicatio	ons > 🥪 senior-project > Devices > 📰 ard_2 > Data						
Filter							
	time counter port 18:48:40 1 2 confirmed payload: 31 7C 32 33 2E 32 32 7C 31 39 2E 35 30 70	С 3					
	Uplink Payload						
	31 7C 32 33 2E 32 32 7C 31 39 2E 35 30 7C 37 39 2E 39 38 7C 31 30 30 33 36 38 2E 30 35 7C	[
	Fields						
	<pre>{ "ID": "1", "altitude": "79.98", "humidity": "19.50", "latitude": "", "longtitude": "", "pressure": "100368.05", "temperature": "23.22" }</pre>						

Figure 8: TTN website interface

Phase 5: Server Database

Using The Things Network's website, the data can be viewed in a browser and the packet decoder can be reprogrammed so the data is shown differently

22:53:27 22:52:42 22:52:32

Figure 7: Traffic shown on the gateway from nodes

Phase 4: Gateway Database Gateway collects the data package from nodes and the data is sent to the server

Frequenc yDatarateCoderateRSSISNR 355626 0 904.3 $SF10BW125$ $4/5$ -73 9.0 259623 6 926.9 $SF10BW500$ $4/5$ -7 9.0 759623 6 905.1 $SF10BW125$ $4/5$ -72 9.2 248212 3 904.1 $SF7BW125$ $4/6$ -113 -11.8						
0 904.3 SF10BW125 4/5 -73 9.0 259623 926.9 SF10BW500 4/5 - - 759623 905.1 SF10BW125 4/5 -72 9.2 6 905.1 SF10BW125 4/5 -72 9.2 248212 904.1 SF7BW125 4/6 -113 -11.8 2475941 SF7BW125 3 3 - -	licks	-	Datarate	Coderate	RSSI	SNR
6 926.9 SF10BW500 4/5 - - 759623 905.1 SF10BW125 4/5 -72 9.2 6 905.1 SF10BW125 4/6 -113 -11.8 248212 904.1 SF7BW125 4/6 -113 -11.8 3 904.1 SF7BW125 5 - -			SF10BW125	4/5	-73	9.0
905.1 SF10BW125 4/5 -72 9.2 248212 904.1 SF7BW125 4/6 -113 -11.8 3 267941 -113 -11.8 -11.8			SF10BW500	4/5	-	-
904.1 SF7BW125 4/6 -113 -11.8 3 267941			SF10BW125	4/5	-72	9.2
			SF7BW125	4/6	-113	-11.8
904.3 SF7BW125 4/6 -112 -12.5		1 904.3	SF7BW125	4/6	-112	-12.5