

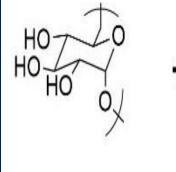
Engineering Microstructures in Biomaterials for Drug Delivery William Countey, Emerson Dwyer, Saniya Yesmin Bubli, Dr. Linqing Li Department of Chemical Engineering and Bioengineering University of New Hampshire, Durham, NH 03824

Background

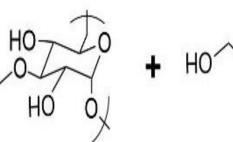
- Approximately 1 in 5 people contract cancer during their lives.
- **Chemotherapy** is one-way cancer is treated, but it has harmful side effects and often requires frequent hospital visits.
- Hydrogels as a drug delivery system could offer solutions to these problems, but raise some problems of their own, primarily in burst/slow-release of drugs.
 - Increased Blood Toxicity
 - Swift Decline in Effectiveness
 - Frequent Injections
 - Lack of Precision
- We sought to solve these problems by engineering hydrogels that utilize sustained release, which offers:
 - Reduced Blood Toxicity
 - Steady Effectiveness
 - Fewer Injections
 - More Precise Targeted Drug Delivery
- We utilized microstructured hydrogels comprised of **Dextran Methacrylate (Dex-MA)**, a polysaccharide modified with **hydrophobic** residues that undergoes phase separation in an aqueous solution with well-defined microdomains to accommodate **hydrophobic** drugs and test dyes.

Materials

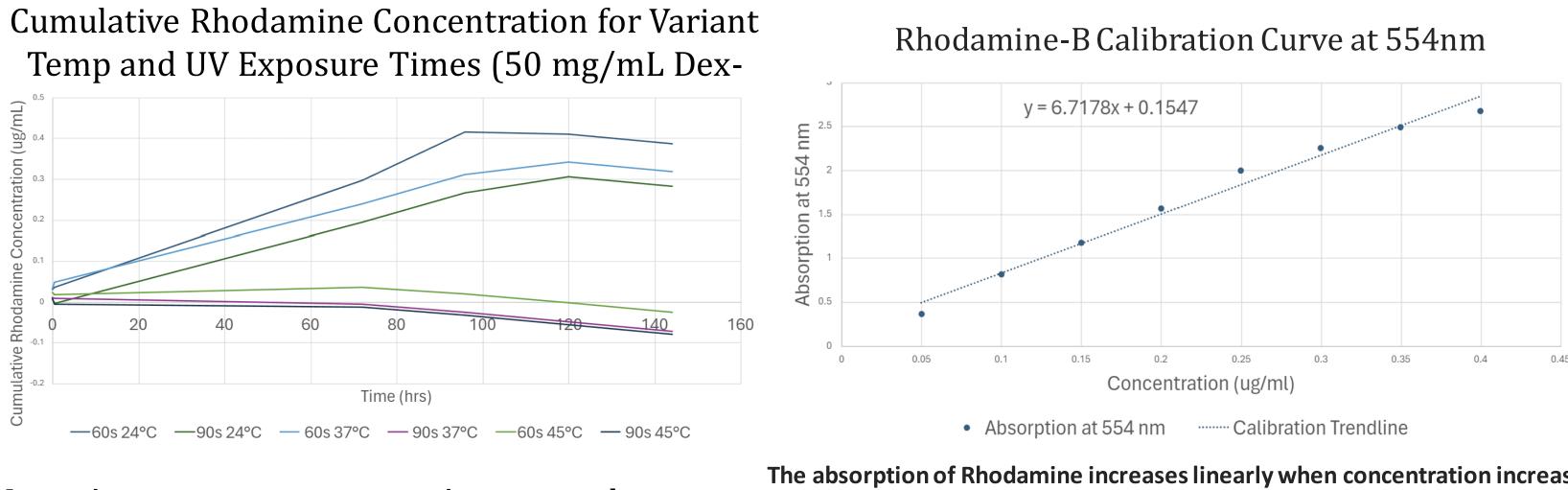
- Dextran is an uncharged hydrophilic Homopolysaccharide and FDA-approved material.
- **Rhodamine-B** is a hydrophobic dye.
- **Doxorubicin (DOX)** is a hydrophobic chemotherapy drug.
- **Irgacure 2959** is a photo-initiator initiating the photopolymerization of dextran hydrogel precursor.


Dex-MA Synthesis

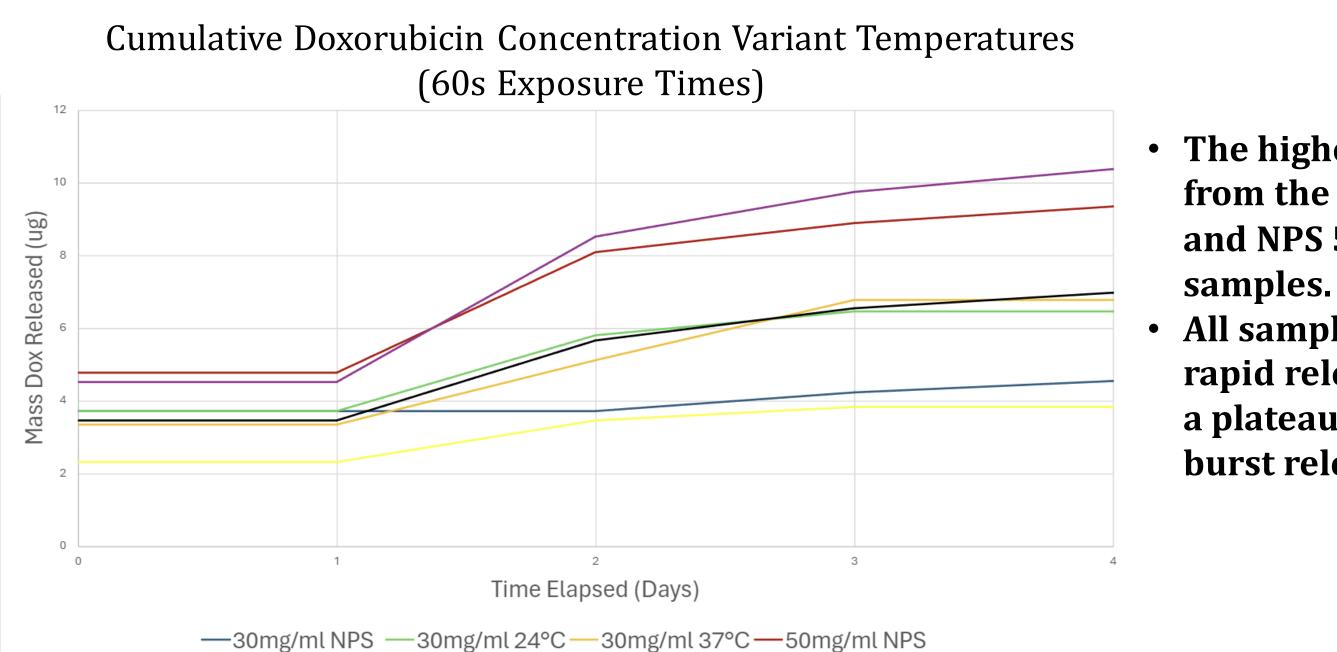
Modified Dextran (Dex-MA)



- The Dextran was chemically modified by adding glycidyl methacrylate to make the resulting materials hydrophobic.
- The reacted materials were precipitated in isopropanol and dialyzed for 3 days and lyophilized.


	DMAP	
~~~0	DMSO 45 °C, 24 hrs	₩ O



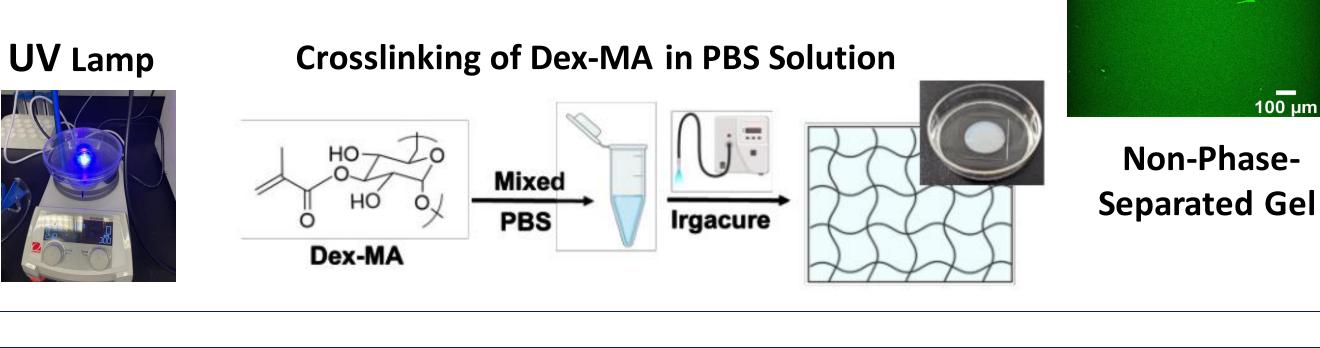

Synthesis of dextran methacrylate







Increasing temperature or exposure time seems to decrease drug release, suggesting an inverse relationship between gel stiffness and rate of release.




### Photocrosslinked Microstructured Hydrogels

Hydrogel solutions were prepared separately with dye and drug at a Dex-MA concentration of 50 mg/mL in PBS Buffer. Solutions were brought to different temperatures to promote differences in phase separation.

- Cooled on ice for NPS
- Heated to 24°C, 37°C and 45°C

2µL of photo-initiator Irgacure 2959 added to each 100µL sample. Each sample was exposed to 365nm wavelength UV light with intensity 25mW/cm² for 30s to 90s to crosslink.



### Results

The absorption of Rhodamine increases linearly when concentration increases, allowing the concentration of Rh-B to be found from observed absorbance. Curve was created using absorption data from a Cary 3500 UV-Vis Spectrophotometer.

— 50mg/ml 24°C — 50mg/ml 37°C — 50mg/ml 45°C

**Standard curve equation used to calculate concentrations of Doxorubicin: y = .01983x - .00558** 







Rhodamine encapsulated

Gel



Phase-Separated Gel

100 µm

### • The highest releases came from the 24°C 50mg/mL and NPS 50mg/mL

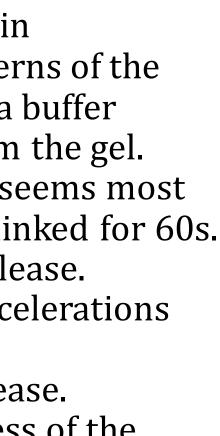
All samples expressed rapid release followed by a plateau, suggesting burst release.

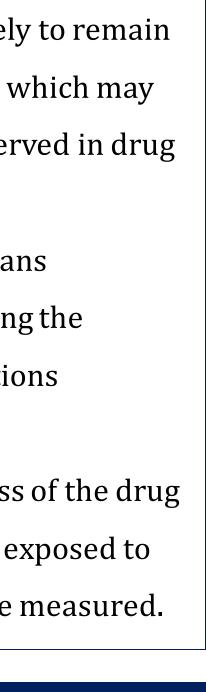
## Discussions

- Hydrogels made from a phase-separated Dex-MA solution contain well defined microdomains that can effectively hold hydrophobic substances such as:
  - Test dye Rhodamine B
- Chemotherapy drug Doxorubicin Such hydrogels can control the release patterns of the encapsulated drugs/dyes when exposed to a buffer
- solution such as PBS, allowing diffusion from the gel. Cumulative concentration of Rh-B released seems most
- linear for the gel brought to 37°C and crosslinked for 60s. • Optimal conditions for Rh-B release.
- All Dox releases seemed to display sharp accelerations followed by plateaus.
- This is indicative of a burst release. Dye and drug release depends on the stiffness of the gels and temperatures. Higher stiffness and temperature exhibited slower drug/dye release.

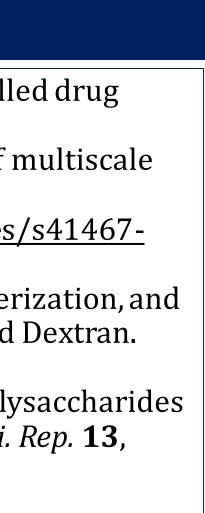
## **Conclusions and Future Works**

- Drug is more hydrophobic than Rh-B, it is more likely to remain encapsulated in the Dex-MA gel than the Rh-B was, which may explain the low overall released concentration observed in drug encapsuled gels.
- Future work will likely include testing different means of encapsulation in terms of loading efficiency, tuning the stiffness of gels and perhaps other solutions conditions to achieve sustained/controlled release.
- Tests must also be done to test the true effectiveness of the drug released by the gel; specifically, cancer cells will be exposed to the gel and its response to the diffusing drug will be measured.


### Acknowledgements


Dr. Linqing Li, Saniya Yesmin Bubli, UNH Chemical and Bioengineering Department, UNH Instrumentation Center and The Innovation Scholar Program.


### References


- 1. Li, J. & Mooney, D. J. Designing hydrogels for controlled drug delivery. *Nat Rev Mater* **1**, 1–17 (2016).
- Phase-separation facilitated one-step fabrication of multiscale heterogeneous two-aqueous-phase gel | Nature Communications.<u>https://www.nature.com/articles/s41467-</u> 023-38394-9.
- Van Dijk-Wolthuis, W. N. E. *et al.* Synthesis, Characterization, and Polymerization of Glycidyl Methacrylate Derivatized Dextran. *Macromolecules* **28**, 6317–6322 (1995).
- Bubli, S. Y. *et al.* Inducing an LCST in hydrophilic polysaccharides via engineered macromolecular hydrophobicity. Sci. Rep. 13, 14896 (2023).









